Optimality and duality theory for stochastic optimization problems with nonlinear dominance constraints
نویسندگان
چکیده
منابع مشابه
Optimality and duality theory for stochastic optimization problems with nonlinear dominance constraints
We consider a new class of optimization problems involving stochastic dominance constraints of second order. We develop a new splitting approach to these models, optimality conditions and duality theory. These results are used to construct special decomposition methods.
متن کاملDuality for vector equilibrium problems with constraints
In the paper, we study duality for vector equilibrium problems using a concept of generalized convexity in dealing with the quasi-relative interior. Then, their applications to optimality conditions for quasi-relative efficient solutions are obtained. Our results are extensions of several existing ones in the literature when the ordering cones in both the objective space and the constr...
متن کاملOptimization with Stochastic Dominance Constraints
We introduce stochastic optimization problems involving stochastic dominance constraints. We develop necessary and sufficient conditions of optimality and duality theory for these models and show that the Lagrange multipliers corresponding to dominance constraints are concave nondecreasing utility functions. The models and results are illustrated on a portfolio optimization problem.
متن کاملOptimality Conditions and Duality for Nonsmooth Multiobjective Optimization Problems with Cone Constraints and Applications
Abstract: In this work, a nonsmooth multiobjective optimization problem involving generalized invexity with cone constraints and Applications (for short, (MOP)) is considered. The Kuhn-Tucker necessary and sufficient conditions for (MOP) are established by using a generalized alternative theorem of Craven and Yang. The relationship between weakly efficient solutions of (MOP) and vector valued s...
متن کاملPortfolio Optimization with Stochastic Dominance Constraints
We consider the problem of constructing a portfolio of finitely many assets whose returns are described by a discrete joint distribution. We propose a new portfolio optimization model involving stochastic dominance constraints on the portfolio return. We develop optimality and duality theory for these models. We construct equivalent optimization models with utility functions. Numerical illustra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Programming
سال: 2004
ISSN: 0025-5610,1436-4646
DOI: 10.1007/s10107-003-0453-z