Optimality and duality theory for stochastic optimization problems with nonlinear dominance constraints

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimality and duality theory for stochastic optimization problems with nonlinear dominance constraints

We consider a new class of optimization problems involving stochastic dominance constraints of second order. We develop a new splitting approach to these models, optimality conditions and duality theory. These results are used to construct special decomposition methods.

متن کامل

Duality for vector equilibrium problems with constraints

‎In the paper‎, ‎we study duality for vector equilibrium problems using a concept of generalized convexity in dealing with the quasi-relative interior‎. ‎Then‎, ‎their applications to optimality conditions for quasi-relative efficient solutions are obtained‎. ‎Our results are extensions of several existing ones in the literature when the ordering cones in both the objective space and the constr...

متن کامل

Optimization with Stochastic Dominance Constraints

We introduce stochastic optimization problems involving stochastic dominance constraints. We develop necessary and sufficient conditions of optimality and duality theory for these models and show that the Lagrange multipliers corresponding to dominance constraints are concave nondecreasing utility functions. The models and results are illustrated on a portfolio optimization problem.

متن کامل

Optimality Conditions and Duality for Nonsmooth Multiobjective Optimization Problems with Cone Constraints and Applications

Abstract: In this work, a nonsmooth multiobjective optimization problem involving generalized invexity with cone constraints and Applications (for short, (MOP)) is considered. The Kuhn-Tucker necessary and sufficient conditions for (MOP) are established by using a generalized alternative theorem of Craven and Yang. The relationship between weakly efficient solutions of (MOP) and vector valued s...

متن کامل

Portfolio Optimization with Stochastic Dominance Constraints

We consider the problem of constructing a portfolio of finitely many assets whose returns are described by a discrete joint distribution. We propose a new portfolio optimization model involving stochastic dominance constraints on the portfolio return. We develop optimality and duality theory for these models. We construct equivalent optimization models with utility functions. Numerical illustra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Programming

سال: 2004

ISSN: 0025-5610,1436-4646

DOI: 10.1007/s10107-003-0453-z